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Abstract—This paper studies adaptive radar detection of point-
like targets in the presence of Gaussian interference and possible
diffuse multipath. For this problem, a Tunable Adaptive Matched
Filter (T-AMF) detector which contains a tuning parameter ruled
by the strength of multipath effects was proposed. This paper
develops a two-stage strategy for the selection of the tuning
parameter by jointly using a two-step energy detector and the
expected likelihood (EL)-based principle. Once plugged into the
T-AMF, the selected parameter yields a fully adaptive detector
free of any user parameter. Remarkably, the new architecture
possesses the desired constant false alarm rate (CFAR) property
with respect to the disturbance covariance. Finally, its detection
performance is assessed and validated via numerical examples.

Index Terms—Diffuse multipath, adaptive signal detection,
tuning parameter, energy detector, expected likelihood approach.

I. INTRODUCTION

TARGET detection in diffuse multipath environments is
a challenging research topic in radar signal processing.

When multipath occurs, the radar site receives the signal
backscattered from the target via many propagation paths in-
cluding a direct path and some indirect paths [1]. The indirect
paths usually arise when waves are reflected by rough or
glistening surfaces [1]–[4]. Therefore, the useful target returns
contain not only the backscattered line-of-sight component
but also indirect-path contributions. In practical scenarios, the
combination of multipath waves is highly sensitive to the
number of paths, directions of arrival, strength of echoes, and
Doppler shifts [1], which are usually not predictable because
of unknown “space-time-varying” reflection characteristics of
the surrounding glistening surface [4]. As a result, the diffuse
multipath can cause a mismatch of the line-of-sight target
signature in the cell under test, and conventional adaptive
strategies [5]–[9] are no longer able to provide a reliable
detection.

Many works have devoted to overcoming the influence
of the multipath effects on radar signal processing. Several
knowledge-aided adaptive detection approaches have been
developed by leveraging prior knowledge of the radar-target
environment [10] and the reflected steering vector [11], [12].
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When the mismatched steering vector belongs to a given signal
subspace, some robust subspace detectors have been provided
in [13]–[21]. Based on the constrained generalized likelihood
ratio (GLR) criterion, the Conic Acceptance Detector (CAD)
[22], [23], the robust Adaptive Matched Filter (AMF) [24],
and the Tunable AMF (T-AMF) [4], which are all tunable
detectors, have been proposed to improve the performance of
the conventional GLR test. Unfortunately, the involved tuning
parameters can be hardly set in time-varying scenarios, and a
poor selection may lead to performance degradations.

In this paper, adaptive detection of point-like targets in the
presence of Gaussian interference and possible diffuse mul-
tipath is investigated, and an innovative two-stage approach
is proposed to determine the tuning parameter in the T-AMF.
The first stage determines the presence or absence of multipath
effects via a covariance matrix equality testing (resorting to a
two-step energy detector (ED)); the second stage provides an
estimation of the tuning parameter (according to an expected
likelihood (EL)-based approach [25]–[28]) when the hypothe-
sis of multipath presence is accepted. Combining the T-AMF
with the two-stage selection procedure leads to a fully adaptive
detector that is free of any user parameter. This design scheme
also applies to adaptive detection of range-distributed targets,
which is studied in our another paper [29]. Remarkably, the
new adaptive detector ensures the constant false alarm rate
(CFAR) property. Finally, we conduct numerical examples to
assess the detection capabilities.

The remainder of this paper is organized as follows. Section

Notations—Throughout this paper, scalars are denoted by regular letters,
vectors and matrices by boldface lowercase and uppercase letters, respectively.
CM is the set of M -dimensional complex column vectors. CM×N is the set
of M × N complex matrices. For a complex number x, |x| represents the
modulus of x. The Euclidean norm of a vector b is denoted by ‖b‖. Symbols
(·)T and (·)† stand for transpose and conjugate transpose, respectively. We
denote by IN the N×N identity matrix and by 0 the null vector or matrix of a
proper dimension. For a matrix A, ‖A‖2 and det(A) denote its spectral norm
and its determinant, respectively. Diag(·) denotes a diagonal matrix formed
from its vector argument. The curled inequality symbol � (and its strict form
�) is used to denote generalized matrix inequality: for any A ∈ CN×N ,
A � 0 means that A is a positive semi-definite matrix (A � 0 for positive
definiteness). A ⊗ B indicates the Kronecker product of matrices A and
B. Finally, X ∼ CNN,M (B,C,D) denotes a complex circular Gaussian
distributed matrix X ∈ CN×M with mean matrix B and covariance matrix
C ⊗D (i.e., the covariance matrix of vec(X)), where B ∈ CN×M , C ∈
CM×M , and D ∈ CN×N .



II formulates the problem and introduces the T-AMF. Section
III focuses on the design of an adaptive selection procedure for
the tuning parameter. Section IV provides some case studies
to assess the effectiveness of the considered detectors. Section
V contains conclusions.

II. PROBLEM FORMULATION

Assume that a radar collects data from N (temporal, spatial,
or spatial-temporal) channels. Let z ∈ CN be a vector of the
data under test (primary data) including possible target returns
and disturbance, and suppose the availability of training data
(secondary data) y1, . . . ,yK ∈ CN , free of useful signal. Let
us focus on the detection of point-like targets in the presence of
a possible diffuse multipath signal produced by a glistening or
rough surface, where the direct-path signal is associated with
the known target steering vector p ∈ CN . In this scenario, the
signal backscattered from the target is received via multiple
propagation paths. Let Q be a unitary matrix with its first
row equal to p†

‖p‖ . After rotating the observation data by Q:
z = Qz,yk = Qyk, k = 1, . . . ,K, the problem under
consideration can be formulated as a binary hypothesis test
with the following canonical form:

H0 :

{
z = n,

yk = nk, k = 1, . . .K,

H1 :

{
z = αe1 + s + n,

yk = nk, k = 1, . . .K,

(1)

where
• e1 = [1, 0, . . . , 0]T is the N -dimensional canonical-form

target steering vector associated with the direct path;
• α ∈ C denotes the (unknown) deterministic amplitude

parameter, accounting for both target reflectivity and
propagation effects on the direct path;

• n and nk’s are disturbance vectors, and [n,n1, . . . ,nK ]
∼ CNN,K+1(0, IK+1,M) with M � 0 and K ≥ N ;

• s ∈ CN represents the vector of echoes from indirect
paths due to diffuse multipath phenomena, which is as-
sumed to follow a zero-mean complex circular Gaussian
distribution, i.e., s ∼ CNN (0,Σ), with unknown Σ � 0.

Define R , M +Σ. The probability density function (pdf)
of the primary data under H1 is given by

p1(z;α,R) =
1

πN det(R)
exp

[
−(z−αe1)†R−1(z−αe1)

]
,

and under H0, its pdf is given by letting α = 0 and R = M .
For the detection problem (1), the decision statistic of the T-
AMF proposed by [4] can be written as

TT-AMF(ε) =

max
α∈C,R∈Ωε

p1(z;α,R)

p0(z;M̂)
(2)

= (1 + ε)(N−1) λ̂(ε) exp(z†M̂−1z)

exp
(
λ̂(ε)ω̂

) , (3)

where

• M̂ is a consistent estimate of M defined by

M̂ =
1

K

K∑
k=1

yky
†
k =

[
m̂11 m̂†21

m̂21 M̂22

]
∈ CN×N , (4)

with m̂21 ∈ CN−1, M̂22 ∈ C(N−1)×(N−1), and m̂11 > 0
(with probability 1);

• Ωε = {R � 0 : ‖IN − M̂
1
2R−1M̂

1
2 ‖2 ≤ ε} with ε ≥ 0

defining a neighborhood of R whose “quasi-whitened”
inverse M̂

1
2R−1M̂

1
2 is ε-similar to the identity matrix

in terms of the spectral norm;
• z = [z1, z

T
2 ]T, ω̂ = z†2M̂

−1
22 z2, and λ̂(ε) = min{1 +

ε,max(1/ω̂, 1− ε)};
• the optimal solution to the optimization problem in (2) is

α̂ =
e†1M̂

−1z

e†1M̂
−1e1

, (5)

R̂ = M̂
1
2U †Diag

( 1

λ̂(ε)
,

1

1 + ε
, . . . ,

1

1 + ε

)
UM̂

1
2 ,

(6)

with U containing the eigenvectors of the following
matrix

M̂
1
2 (z−α̂e1)(z−α̂e1)†M̂

1
2 = U †Diag(ω̂, 0, . . . , 0)U .

Note that the tuning parameter ε needs to be set based on the
strength of the diffuse multipath returns.

III. ADAPTIVE SELECTION OF PARAMETER

The performance of the tunable detection statistic TT-AMF(ε)
depends on the tuning parameter ε. In general, the T-AMF
requires an appropriate selection of ε, which is related to
the strength of the diffuse multipath echoes. Specifically, for
strong reflection contributions, a high value of ε should be
used, while for weak multipath signal, an ε value close to
zero is reasonable. Unfortunately, prior knowledge of ε is not
usually available. As a result, an effective adaptive selection
of the tuning parameter is highly valuable in application. This
section is devoted to the development of a data-dependent
approach to selecting the value of ε.

Before proceeding, it is worth highlighting that the hypoth-
esis testing problem (1) amounts to discriminating between

H0 : α = 0,Σ = 0 and H1 : |α| > 0. (7)

Moreover, the alternative hypothesis H1 can be split into two
further hypotheses:

H10 : |α| > 0,Σ = 0, H11 : |α| > 0, ‖Σ‖2 > 0, (8)

which correspond to the multipath-free and multipath-present
situations, respectively.

A two-stage procedure is adopted to select a suitable value
of ε: i) make a decision for the presence or absence of
multipath; ii) estimate the uncertainty size ε when the presence
of multipath is established. Details on the joint detection and
estimation process are reported below.



A. Detection of The Multipath Effects
The multipath detection problem can be formulated as the

following binary hypothesis test:

H0 : Σ = 0, H11 : ‖Σ‖2 > 0, (9)

where H0 = H0

⋃
H10, and α acts as a nuisance parameter. If

the H0 hypothesis is accepted, ε is set to 0 directly; otherwise,
an appropriate estimate of ε reflecting the strength of the
multipath contributions is proposed.

Note that (9) is equivalent to the one-sided hypothesis
testing problem:

H0 : R = M , H11 : R �M and R 6= M . (10)

For known α and M , an ED statistic for (10) in the whitened
space after removing the possible target is defined by∥∥M− 1

2 (z − αe1)(z − αe1)†M− 1
2

∥∥
2
. (11)

In fact, resorting to the GLR criterion leads to a test equivalent
to the ED in the case (i.e., known α and M ). Then, a two-step
ED for (9) is proposed replacing the unknown α and M in
(11) with α̂ and M̂ , respectively:

T2S-ED =
∥∥M̂− 1

2 (z − α̂e1)(z − α̂e1)†M̂− 1
2

∥∥
2

= z†2M̂
−1
22 z2 = ω̂

H11

≷
H0

η0, (12)

where η0 is set to guarantee the desired probability of false
alarm Pf0.

B. EL-Based Estimation of ε
The EL method that provides an inherently solid way to

estimate unknown parameter values, has been deeply studied
in [25]–[28]. For our problem, accounting for the unknown α,
the likelihood ratio with respect to the primary data covariance
matrix R is given by

LR(R|z, α) =
(z − αe1)†R−1(z − αe1)

exp
[
(z − αe1)†R−1(z − αe1)− 1

] . (13)

Now, the unknown amplitude α is replaced by its maximum
likelihood estimate α̃ =

e†1R
−1z

e†1R
−1e1

to remove the dependency
of the likelihood ratio on the unknown parameter, leading to

LR(R|z) , LR(R|z, α = α̃)

=
(z − α̃e1)†R−1(z − α̃e†1)

exp
[
(z − α̃e1)†R−1(z − α̃e1)− 1

] (14)

=
z†2R

−1
22 z2

exp
(
z†2R

−1
22 z2 − 1

) , (15)

where R22 is the (N−1)×(N−1) submatrix of R obtained by
removing the first row and column from R. Since R

− 1
2

22 z2 ∼
CNN−1(0, IN−1), it follows that the expression in (15) is
scenario-free (depending only on N ), and its pdf, denoted by
p(LR), can be precalculated. In fact, by further inspection of
(15), LR(R|z) gives exactly the likelihood ratio with respect
to R22 relying on the line-of-sight signal-free components z2

of the primary data.
Next, the scenario-free function (15) is used for the estima-

tion of ε. Plugging (6) into (14) gives

LR(ε|z) , LR(R̂(ε)|z) =
λ̂(ε)ω̂

exp
(
λ̂(ε)ω̂ − 1

) . (16)

Inspired by the EL method [25], [26], an EL-based estimate
of ε is obtained as

ε̂EL = arg min
ε≥0

∣∣∣LR(ε|z)− LRa
∣∣∣2, (17)

where LRa is a precalculated scalar. Specifically, [25] suggests
an upper bound of the random variable LR in (15) to define
LRa, i.e.,

∫ LRa
0

p(LR)d(LR) = 1− δ, with 0 < δ � 1. The
following proposition lays down the bases to obtain an optimal
solution to (17).

Proposition 1: Let LR0 = LR(0|z) = ω̂
exp(ω̂−1) and ε? =

| 1ω̂ − 1|. Then we have following results:
(i) LR(ε|z) is a strictly increasing function of ε on [0, ε?]

and keeps constant on [ε?,+∞);
(ii) if LR0 ≤ LRa < 1, the optimal solution ε̂EL to the

optimization problem (17) is unique;
(iii) if 0 < LRa < LR0, ε̂EL = 0 is the optimal solution.

Since the optimal solution ε̂EL belongs to the bounded
interval [0, ε?], the bisection method is an efficient way to
solve (17).

C. Automatically T-AMF (AT-AMF)

Combining the T-AMF (3), the two-step ED (12), and the
EL-based estimate (17), the Automatically T-AMF (AT-AMF)
is defined as

TAT-AMF = TT-AMF
[
ε̂EL × u(T2S-ED − η0)

] H1

≷
H0

η, (18)

where u(x) is the unit-step function u(x) =

{
1 x ≥ 0
0 x < 0

,

and η is the threshold set according to the desired probability
of false alarm Pfa. The block scheme of the AT-AMF is
showed in Fig. 1.

z and {yk}k=1,...,K Compute ω̂ T2S-ED
H11

≷
H0

η0

ε = ε̂EL

ε = 0

TT-AMF(ε)
H1

≷
H0

η

η0

LRa

H11

H0

ε

η

H1

H0

Fig. 1. Block scheme of the AT-AMF test.



It is worth pointing out that the pdf of the AT-AMF under
H0 is independent of the nuisance parameter M , and thus
it is a CFAR test. To demonstrate it, observe that TAT-AMF
is constructed from TT-AMF, T2S-ED, and ε̂EL, which are all
functions of T1 ,

{
z†M̂−1z, z†2M̂

−1
22 z2

}
. It has been

proven that the distribution of T1 under H0 does not depend
on M [18]. As a result, the pdf of TAT-AMF is parameter-free
under the null hypothesis.

IV. PERFORMANCE ANALYSIS

This section aims at assessing the performance of the
devised AT-AMF and the T-AMF with different predetermined
ε. Meanwhile, the CAD [22], the AMF [30], and the GLR
test [7] are taken for comparison. According to [22], the
tuning parameter of the CAD is set to 0.5 in the following
case studies. A clairvoyant benchmark is obtained evaluating
the GLR test statistic with known disturbance and multipath
covariance matrices.

Standard Monte Carlo counting techniques are used to cal-
culate the thresholds and the probabilities of detection for the
considered detectors. To limit the computation burden, assume
that Pfa = 10−3 for the target detection, and Pf0 = 0.5×Pfa
for the two-step ED (12). Then, the thresholds needed to
ensure the preassigned Pfa and Pf0 values are evaluated
via 100/Pfa and 100/Pf0 independent trails, respectively.
Moreover, the detection probabilities (Pd) are estimated using
5 × 103 independent realizations of the decision rules. The
precalculated LRa is evaluated exploiting 106 independent
realizations with δ = 10−2.

Assume a spatial processing with N = 16 receiving an-
tennas. The nominal line-of-sight steering vector p = v(0) is
given by

v(θ) =
1√
N

[
1, e2π

d
λ sin(θ), . . . , e2π(N−1) dλ sin(θ)

]T
, (19)

where d is the inter-element spacing, λ is the operating
wavelength, and θ is the angle off-boresight of the impinging
echoes.

The disturbance covariance matrix is modeled as

M = σ2
nIN + σ2

cM c, (20)

where σ2
c > 0 is the clutter power, σ2

n > 0 is the thermal noise
power, and M c is the normalized clutter covariance matrix
with the (i, j)-th entry 0.95|i−j|. Besides, the clutter-to-noise
ratio is set to σ2

c/σ
2
n = 50 dB with σ2

n = 1. In order to average
the detection performance, in each independent trial, the
amplitude parameter is simulated according to α ∼ CN (0, ρ),
where ρ ≥ 0 is used to achieve a desired average signal-to-
interference-plus-noise ratio (SINR):

SINR , E
[
|α|2

]
p†M

−1
p = ρp†M

−1
p. (21)

To describe multipath effects, assume that the glistening
surface produces NML = 4 returns impinging on the mainlobe
and NSL = 4 returns from the sidelobe directions. The covari-
ance matrix of the primary data z is modeled as M+Σ(α,L),
where the multipath covariance matrix Σ(α,L) is given by

Σ(α,L) =

NML+NSL∑
n=1

|α|2

L
v(θn)v(θn)†, (22)

-20 -15 -10 -5 0 5 10 15 20

SINR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

AT-AMF

CAD-0.5

AMF

GLR

chairvoyant

(a) Multipath Scenario, L = 10 dB

0 5 10 15 20 25 30 35 40

SINR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

AT-AMF

CAD-0.5

AMF

GLR

chairvoyant

(b) Multipath-Free Scenario

-20 -15 -10 -5 0 5 10 15 20

SINR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

AMF

T-AMF, ǫ=0.1

T-AMF, ǫ=0.2

T-AMF, ǫ=0.4

T-AMF, ǫ=0.6

T-AMF, ǫ=0.8

T-AMF, ǫ=1.0

AT-AMF

(c) Multpath Scenario, L = 10 dB

0 5 10 15 20 25 30 35 40

SINR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

AMF

T-AMF, ǫ=0.1

T-AMF, ǫ=0.2

T-AMF, ǫ=0.4

T-AMF, ǫ=0.6

T-AMF, ǫ=0.8

T-AMF, ǫ=1.0

AT-AMF

(d) Multipath-Free Scenario

Fig. 2. Pd versus SINR for the considered detectors, K = 32.



where L is used to adjust the severity of the multipath, for
mainlobe scatterers, θn, n = 1, . . . , NML are i.i.d. uniform
random variables over [−2, 2] degrees, and for the sidelobe
scatterers, θn, n = NML + 1, . . . ,MML + NSL are i.i.d.
uniform random variables over [8.5, 11.5] degrees. Note that Σ
depends on α (the higher the target reflectivity, the stronger
the multipath contributions). Meanwhile, when L � 0, the
multipath-free environment occurs, and when L decreases, the
effects of the multipath become more severe.

Fig. 2 displays the Pd of the considered detectors versus
SINR for different scenarios, i.e., either L = 10 dB (refer-
ring to a rich scattering diffuse multipath environment) or a
multipath-free environment. Fig. 2(a) highlights that the AT-
AMF achieves the best performance in the multipath scenario,
and the CAD, the AMF, and the GLR suffer some loss. Such
behavior can be attributed to the fact that the CAD receiver
does not change the tuning parameter adaptively and the AMF
and the GLR ignore the multipath effects. Even if in the
multipath-free scenario, the AT-AMF has only a very slight
degradation of the detection performance compared to the
AMF and the GLR devised under the assumption of multipath
absence, as shown in Fig. 2(b). Fig. 2(c) and (d) compare the
AT-AMF and the T-AMF with fixed ε values, corroborating
the effectiveness of the proposed tuning parameter selection
approach.

V. CONCLUSION

Adaptive target detection in the presence of Gaussian in-
terference and possible diffuse multipath has been considered.
The diffuse multipath returns have been modeled as a zero-
mean Gaussian random vector with unknown covariance ma-
trix. To handle the resulting hypothesis testing problem, the
AT-AMF has been proposed, where the tuning parameter in the
T-AMF is set jointly exploiting a two-step ED and an EL-based
estimation for the strength of multipath returns. Remarkably,
the proposed detection strategy possesses the CFAR property.
The numerical results have revealed a robust behavior of the
AT-AMF with respect to the actual operating environment, i.e.,
presence or absence of multipath.
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