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ABSTRACT
This paper introduces the hierarchical truncated Gaussian model in
representing automotive radar measurements for extended object
tracking. The model aims at a flexible spatial distribution with adap-
tive truncation bounds to account for partial-view measurements
caused by self-occlusion. Built on a random matrix approach, we
propose a new state update step together with an adaptively update
of the truncation bounds. This is achieved by introducing spatial-
domain pseudo measurements and by aggregating partial-view mea-
surements over consecutive time-domain scans. The effectiveness
of the proposed algorithm is verified on a synthetic dataset and an
independent dataset generated using the MathWorks Automated
Driving toolbox.

Index Terms— Automotive radar, Bayesian filtering, object
tracking, extended object, random matrix, autonomous driving.

1. INTRODUCTION

Autonomous driving has been in the spotlight over the past decade.
Along with ultrasonic, camera and LIDAR sensors, automotive radar
assists reliable environmental perception in all-weather conditions
with affordable costs. This paper focuses on object tracking using
automotive radar measurements. Within this context, extended ob-
ject tracking (EOT), i.e., the tracking of an object that may give rise
to one measurement per time scan, can lead to improved tracking ca-
pability over conventional point object tracking by augmenting the
object state to both kinematic and extent states. A recent overview
of EOT literature can be found in [1].

A measurement model is required to enable a Bayesian filter-
ing framework for EOT. This likelihood needs to capture not only
the spatial model, i.e., how radar measurements are spatially dis-
tributed around the object, but also characteristics of sensor noise.
Early efforts include a model of a fixed set of points on a rigid body
that requires a non-scalable data association between the fixed set of
points and radar measurements [2–4]. Flexible spatial models have
gained more attention. In these approaches, automotive radar mea-
surements are spatially distributed as a function of individual mea-
surement likelihoods, also referred to as the spatial distribution.

For automotive radar measurements, the spatial distribution can
be generally divided into three categories: 1) contour models that
reflect the measurement distribution along the contour [5]; 2) sur-
face models that assume the radar measurements are generated from
the inner surface of objects [6, 7]; and 3) surface-volume models
that balance between the above models with more realistic features.
For the contour model, typical examples include a rectangular shape
model around four edges in [8, 9] and curve approximations us-
ing either Gaussian processes in [10, 11] or B-Spine model in [12].
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Fig. 1: Aggregated real-world automotive radar measurements (nuScenes
dataset [17]) in a normalized object coordinate system. (a): full-view; and
(b) partial-view with relative sensor aspect angle in the range (−π/8, π/8).

For the surface model, a widely used model is the random matrix
approach [6, 13–16] where objects are assumed to have elliptical
shapes. The surface model often leads to computationally simpler
algorithms than the contour model, which requires more degrees of
freedom to describe more complex shapes.

As shown in Fig. 1, real-world automotive radar measurements
rarely follow the above two types of spatial distributions. Two ob-
servations from Fig. 1 can be made: 1) measurement likelihoods are
significantly lower at the center than those in a vicinity around outer
edges; and 2) measurements exhibit self-occlusion features: mea-
surement likelihoods are dominant at object parts that are closed to
the automotive radar sensor. The first observation has motivated re-
cent developments of surface-volume models including a volcanor-
mal measurement model [18] and a completely data-driven measure-
ment model by training real-world automotive radar measurements
using a variational Gaussian mixture [19]. In comparison, there are
few attempts to consider the second observation.

In this paper, we introduce a flexible measurement model to
resemble the real-world spatial distribution of automotive radar
measurements on vehicles with self-occlusion, thereby solving the
two issues arisen in the above observations simultaneously. This is
achieved by introducing a hierarchical truncated Gaussian measure-
ment model with, possibly adaptive, truncation bounds. Specifically,
the hierarchical model introduces a latent variable to denote noise-
free measurement sources and to enforce the measurement feature
that radar measurements are more likely to appear around object
edges with a certain volume, while the noise is added to the mea-
surement sources to model the observable measurements. The self-
occlusion feature is accounted for by treating the truncation bounds
as deterministic but unknown model parameters. To integrate the
proposed measurement model into the Bayesian filtering framework,
we develop a modified measurement update step within the random
matrix model of [13] with the introduction of spatial-domain pseudo
measurements and time-domain scan aggregation. Moreover, we in-
troduce an online estimation step to adaptively update the truncation
bounds for a more accurate spatial distribution.
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Fig. 2: (a): Probability density of the measurement source p(yjk|ξk) centered at the origin of coordinates with ρ = 0.25, l = 4.7, w = 1.8, a1 = b1 = 2.14

and a2 = b2 = 0.75; (b): spatial distribution p(zjk|ξk) with Rk = diag([0.09, 0.09]); (c) spatial distribution p(zjk|ξk) with a1 = 2.14 and a2 = b1 =

b2 =∞; (d) spatial distribution p(zjk|ξk) with a2 = 2.14, b1 = 0.75 and a1 = b2 =∞.

2. PROBLEM FORMULATION AND SIGNAL MODEL

We define the object state as a tuple ξk = (xk, Xk) with xk ∈ Rdx
denoting the kinematic state and Xk ∈ S2

++, a symmetric and posi-
tive definite matrix, denoting the extent state. The object length l and
width w can be extracted from the normalized eigen-decomposition
of Xk. For each time step k, we receive nk measurements Zk ,
{zjk}

nk
j=1 from automotive radar sensors. The objective of object

tracking is to recursively compute the posterior density of the ob-
ject state p(ξk|Z1:k) given all measurements Z1:k = {Z1, · · · , Zk}
up to and including time k. The object state ξk with correspond-
ing uncertainty measures can then be extracted from the posterior
density p(ξk|Z1:k).

Given the posterior density p(ξk−1|Z1:k−1) at time k−1 and the
transition density p(ξk|ξk−1), the predicted density can be obtained
from the Chapman-Kolmogorov equation

p(ξk|Z1:k−1) =

∫
p(ξk−1|Z1:k−1)p(ξk|ξk−1)dξk−1. (1)

Given the predicted density and the current measurements Zk, the
posterior density at time k can be obtained using the Bayes update

p(ξk|Z1:k) ∝ p(ξk|Z1:k−1)p(Zk|ξk), (2)

where p(Zk|ξk) =
∏nk
j=1 p(z

j
k|ξk) is the joint measurement like-

lihood with p(zjk|ξk) denoting the spatial distribution. We approx-
imate the predicted and posterior state densities such that they are
all of the same functional form, which allows a recursive use of the
prediction and update functions.

We model each measurement zjk as zjk = yjk + vjk, where vjk
denotes the Gaussian distributed sensor noiseN (vjk; 0, Rk) with di-
agonal measurement noise covariance Rk. The distribution of the
hidden measurement source yjk, conditioned on the object state, is
modeled as a truncated Gaussian

T N (yjk;Hxk, ρXk, Dk) =
1Dk (yjk)

cDk

N (yjk;Hxk, ρXk), (3)

whereH is the observation matrix, ρ is a scaling factor,Dk specifies
the truncated Gaussian density support, 1Dk (·) is the indicator func-
tion on Dk, and cDk is the corresponding normalization factor. The
truncated area is described by Bk , [ak,1, ak,2, bk,1, bk,2]T ≥ 0
with respect to the object center Hxk and it is assumed that the ori-
entation of the truncated area is the same as that of the object; see
Fig. 2 (a) for an illustration. It is met that Bk ]Dk = R2.

Given the hierarchical measurement model above, the resulting
spatial distribution p(zjk|ξk) can be computed by marginalizing out
the measurement source yjk, yielding

p(zjk|ξk) =

∫
p(zjk|y

j
k)p(yjk|ξk)dyjk

=
1

cDk

∫
Dk

N (zjk; yjk, Rk)N (yjk;Hxk, ρXk)dyjk. (4)

Fig. 3: Proposed partial-view EOT algorithm with scan-aggregation and on-
line bound update.

One example of such marginalized measurement likelihood is shown
in Fig. 2 (b). It can be seen that the hierarchical truncation model
pushes the measurement likelihood away from the object center onto
four edges, reasonably resembling the distribution of real-world au-
tomotive radar measurements, c.f. Fig. 1 (a).

To enable the modelling of partial-view measurements, the pro-
posed measurement model allows one or more bound parameters of
Bk to be infinity. For instance, when the object is observed from
the behind, one can set a2 = b1 = b2 = ∞ with adaptively esti-
mated a1 to concentrate the spatial distribution around the rear part;
see Fig. 2 (c). Similarly, one can set a1 = b2 = ∞ with estimated
a2 and b1 when the object is measured from the front right side; see
Fig. 2 (d).

3. PROPOSED EOT ALGORITHM

In the following, we introduce the prediction and update steps of
the proposed EOT algorithm, as shown in Fig. 3. We assume that
both the predicted and posterior state densities have the factorized
form [13]

p(ξk|Z1:k′) ≈ p(xk|Z1:k′)p(Xk|Z1:k′) (5)
= N (xk;mk|k′ , Pk|k′)IW(Xk; νk|k′ , Vk|k′),

where k′ = k − 1 is for the state prediction and k′ = k for the state
update. The kinematic state xk is Gaussian distributed with pre-
dicted/posterior mean mk|k′ and covariance matrix Pk|k′ , whereas
the extent matrix Xk is inverse Wishart distributed with νk|k′ de-
grees of freedom and the scale matrix Vk|k′ .

3.1. Prediction step

We assume that the state transition density is approximated as a prod-
uct of Gaussian and Wishart distributions [6]. Given the state transi-
tion density [20, Eq. (6)] and the posterior density p(ξk−1|Z1:k−1)
in (5), the predicted parameters {m,P, v, V }k|k−1 can be (approxi-
mately) calculated as [13]

mk|k−1 = g(mk−1|k−1), Gk−1 = ∇xg(x)|x=mk−1|k−1
, (6)

Pk|k−1 = Gk−1Pk−1|k−1G
T
k−1 +Qk−1, (7)



νk|k−1 = 6 + e−Ts/τ (νk−1|k−1 − 6), (8)

Vk|k−1 = e−Ts/τEmk−1Vk−1|k−1E
T
mk−1

, (9)

where Ts is the sampling time, τ is a maneuvering correlation con-
stant, g(·) denotes a kinematic state motion model, Q denotes the
process noise covariance and E denotes the transformation matrix,
typically a rotation matrix depending on x.

3.2. Update Step

As shown in Fig. 3, the state update runs iteratively over three build-
ing blocks: 1) scan-aggregated measurements in a sliding window
with length L, 2) truncation bounds update, and 3) kinematic and
extent states update, until a convergence criteria is met. At the t-th
iteration, we first convert the measurements at the latest time scan k
into local measurements in the object coordinate system (OC) using
the updated state estimates ξ(t−1)

k|k from the (t−1)-th iteration. With
the scan-aggregated local measurements from time step k − L + 1

to the latest time step k, the truncation bounds specified by B(t)
k are

updated using the maximum likelihood (ML) estimation. With the
updated bounds and the new measurements at time step k, the kine-
matic and extent states are updated using a modified random matrix
approach. At the first iteration, i.e., t = 0, we may replace ξ(0)

k|k with
the predicted state estimate ξk|k−1 to initialize the algorithm.

3.2.1. Filtered Scan-Aggregated Measurements

To obtain accurate estimate of the truncation bounds, we can make
use of the filtered scan-aggregated measurements from past time
scans to update the truncation bounds1; see Fig. 4 for an illustration.
This aggregation can be useful when the automotive radar measure-
ments are sparse and partial-viewed due to self-occlusion. Given a
measurement z in the global coordinate system (GC) and the mean
m of the object kinematic state, the corresponding measurement in
the OC at the t-th iteration can be obtained as

z
(t)
OC = M−1

m(t−1)(z −Hm(t−1)), (10)

where Mm is a rotation matrix that can be constructed using the
object kinematic mean m(t−1). And Z(t)

OC groups all local measure-
ments at the t-th iteration.

At the last T -th iteration, the corresponding local measurements
are saved for scan aggregation. Specifically, we have

zjOC,k = z
(T+1)
OC = M−1

m(T−1)(z
j
k −Hm

(T−1)), (11)

and ZkOC = {zjOC,k}
nk
j=1 denotes the filtered scan-aggregated mea-

surements from time step k. With a sliding window size L, the fil-
tered scan-aggregated measurement set is denoted as Zk−L+1:k

OC =

{Zk−L+1
OC , · · · , ZkOC}.

3.2.2. Adaptive Update of Truncation Bounds

By grouping the filtered scan-aggregated measurements Zk−L+1:k
OC

and the new local measurement Z(t)
OC into Z(t),k−L+1:k

OC , the trunca-
tion bounds are updated as follows. The ML estimate B̂(t)

k of the
truncation bounds at the t-th iteration is given by

arg min
B

(t)
k

∑
z∈Z(t),k−L+1:k

OC

− log p(z|ξ(t−1)
k , B

(t)
k ), (12)

1When the measurements are very sparse, there might not be enough in-
formation to give an accurate estimate of the truncation bounds.

Fig. 4: Filtered scan aggregation in object coordinate (OC) system.

where p(z|ξ(t−1)
k , B

(t)
k ) is of the form of (4) that involves both the

normalization factor cDk and the truncated area Dk = R2 \ B(t)
k .

The ML estimation of the four truncation bounds needs to compute
the integration over Dk and directly solving (12) can be computa-
tionally demanding for online update.

To address this issue, we propose to divide the scan-aggregated
measurements into four clusters using the expectation-maximization
algorithm [21], which effectively decomposes the joint ML bound
update into up to four decoupled ML estimates of the truncation
bound. We now explain the procedure to update truncation bound
bk,1 using the measurement set Zbk,1 . The updates of the other three
truncation bounds can be implemented similarly. In what follows,
we omit the notation of iteration index t for brevity. First note that
one can easily set truncation bound to +∞ when its correspond-
ing measurement set is empty. Let f(y1) = T N (0,Λ1,1, bk,1) and
f(r1) = N (0, R1,1) denote, respectively, the probability density
function of a uni-variate truncated Gaussian distribution with den-
sity support {y|y > bk,1} and that of the Gaussian distribution with
zero mean and variance R1,1. Using the convolution formula, the
density of z1 = y1 + r1 is given by

f(z1) =
Φ
(√

Λ1,1R
−1
1,1ζ

−1
1,1z1 −

√
ζ1,1Λ−1

1,1R
−1
1,1bk,1

)
e0.5z21ζ

−1
1,1
√

2πζ1,1Φ
(
−bk,1Λ

−1/2
1,1

) , (13)

where Φ(·) denotes the cumulative density function of a standard
Gaussian distribution, Λ = ρM−1

mk|kVk|k(M−1
mk|k )T /(vk|k − 6) is

the transformed object extent matrix in the OC, and ζ1,1 = Λ1,1 +
R1,1. Then, the decomposed ML estimation is to maximize the like-
lihood of measurement set Zbk,1 as

arg max
bk,1:bk,1>0

∏
z∈Zbk,1

f(z1), (14)

where z1 is given by the x-coordinate of z. This is equivalent to
minimizing the following cost function

arg min
bk,1>0

∑
z∈Zbk,1

(
log Φ

(
−bk,1Λ−0.5

1,1

)
− (15)

log Φ

(√
Λ1,1R

−1
1,1ζ

−1
1,1z1 −

√
ζ1,1Λ−1

1,1R
−1
1,1bk,1

)
,

which can be efficiently solved with standard root-finding algo-
rithms, e.g., Halley’s method [22].

3.2.3. State Update

To integrate the hierarchical truncated Gaussian model into the ran-
dom matrix-based state update [13], we make use of the converted
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Fig. 5: Ground truth and results: (a) ground truth for scenario with synthetic measurements; (b) average estimation results over time for scenario (a); (c) ground
truth for scenario with MathWorks automotive radar measurements, shown as every 10 time steps; (d) average estimation results for scenario (c).

measurement statistics by introducing pseudo measurements [20].
To achieve this, we first compute the analytical mean and spread of
nck = nk(1 − cDk )/cDk pseudo measurements that follow a trun-
cated Gaussian distribution with a density support Dc

k = R2 \ Dk,
and then we take the weighted sum of these computed values and
the sample measurement mean and spread to obtain the converted
measurement mean ¯̆zk and spread ΣZ̆k

[20].
Given the proposed measurement model (4) and the predicted

density p(ξk|Z1:k−1), the updated parameters {m,P, v, V }k|k de-
termining the posterior density are given as:

mk|k = mk|k−1 +Kε, (16a)
Pk|k = Pk|k−1 −KHPk|k−1, (16b)
νk|k = νk|k−1 + (nk + nck), (16c)

Vk|k = Vk|k−1 + N̂ + Ẑ, (16d)

N̂ = X̂1/2S−1/2εεTS−T/2X̂T/2, (16e)

Ẑ = X̂1/2R̂−1/2ΣZ̆k
R̂−T/2X̂T/2. (16f)

where R̂ = ρX̂ +M
(t)
mk|kRk(M

(t)
mk|k )−1 and S = HPk|k−1H

T +

R̂/(nk + nck), K = Pk|k−1HS
−1, X̂ = Vk|k−1/(Vk|k−1 − 6) and

ε = z̆k −Hmk|k−1.

4. SIMULATION RESULTS

In this section, we consider two scenarios in which a rectangular ob-
ject (4.7-m long and 1.8-m wide) moves with a nonlinear motion
for 90 time steps. We assume that the object rotation center coin-
cides with the object physical center. The kinematic object state is
defined as xk = [pk, vk, θk, ωk]T ∈ R5 with the two-dimensional
position pk ∈ R2, polar velocity vk, heading θk, and turn rate ωk.
The coordinated turn motion model is used with a sampling time
of Ts = 1s and standard polar and angular acceleration noise of
σv̇ = 0.1 and σω̇ = π/180, respectively. The exact expressions for
the transition matrix g(·) and process noise covariance matrix Q can
be found in [23]. The transformation function E is a rotation matrix
that depends on the turn rate. Given the posterior density of extent
state IW(Xk; νk|k, Vk|k), the estimates of length l and width w can
be extracted from the normalized eigen-decomposition of the mean
of the inverse Wishart distribution, X̂k = Vk|k/(νk|k − 6). In the
implementation, the number of iterations used in the update step is
set to 5 and the sliding window L has length 2.

4.1. Scenario with Synthetic Partial-View Measurements

We first consider the case that the automotive radar measurements
follow the proposed measurement model over the course of the sim-

ulated trajectory, with parameters l = 4.7, w = 1.8, ρ = 0.25,
Rk = diag([0.125, 0.125]), ak,2 =∞, bk,2 = 0.75, and

ak,1 =

{
∞, if k ≤ 60

2.14, if k > 60
, bk,1 =

{
2.14, if k ≤ 30

∞, if k > 30
.

The number of measurements at each time step is drawn from a Pois-
son distribution with mean 8. Fig. 5(a) shows two snapshots of
synthesized automotive radar measurements at time step 30 and 31,
respectively. It can be seen that most of these radar measurements
appear to be around at most two of the object edges. We compare
the tracking performance between the random matrix approach [13]
(RM) and the proposed method (referred to as HTG-RM). Fig. 5(b)
shows the tracking performance in terms of localization errors (w.r.t
object center), and object length/width errors over time, averaged
over 100 Monte Carlo runs. It can be seen from the results that
the proposed HTG-RM algorithm outperforms the conventional RM
approach by a large margin. Particularly, the HTG-RM algorithm
provides more consistent estimates in terms of the object length and
width over time.

4.2. Scenario with Independent MathWorks Measurements

To further validate the effectiveness of the proposed HTG-RM al-
gorithm in scenarios with model mismatch, we generate the object
trajectory and measurements using the MathWork Automated Driv-
ing toolbox, see Fig. 5(c) for an illustration of the ground truth. It is
worth noting that the simulated measurements tend to appear around
the object edge with a certain volume, which well resembles the dis-
tributional characteristics of real-world automotive radar measure-
ments. In the implementation, the measurement model parameters
are set to Rk = diag([0.125, 0.125]) and ρ = 1/4. The estima-
tion results, averaged over 100 Monte Carlo runs, are shown in Fig.
5(d), and it can be seen that the proposed HTG-RM algorithm still
outperforms the conventional RM approach [13]. Compared with
the results obtained using ideal measurement model in Fig. 5(b), the
HTG-RM performance is only slightly degraded, which validates the
robustness of the proposed HTG-RM algorithm.

5. CONCLUSIONS

In this paper, we propose a new surface-volume measurement model
for partial-view automotive radar object tracking based on a hierar-
chical truncated Gaussian model with adaptive truncation bounds.
The proposed measurement model has been integrated into the ran-
dom matrix approach by introducing pseudo measurements and on-
line updating the truncation bounds. Our simulations validate the
effectiveness of our approach.
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