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Abstract—This paper critically examines the potential perfor-
mance benefits offered by motion of sparse arrays for direction-
of-arrival (DOA) estimation. The motivation behind utilizing
array motion is to increase the number of consecutive difference
lags. However, creating a synthetic array also requires more
temporal measurements compared to the static (non-synthetic)
array. For the first time, we rigorously analyze the trade-off
between the required number of temporal samples and the
length of the difference co-array to understand when synthetic
arrays offer distinct advantages. As a concrete result, we show
that if the ratio of the number of consecutive lags of the
difference coarray of sparse arrays with and without motion is
above a universal threshold, the synthetic array outperforms its
non-synthetic counterpart and has a smaller estimation error.
Our claims are demonstrated both theoretically and through
numerical experiments1.

Index Terms — Sparse Array, Difference Co-Array, Array
Motion, Synthetic Array, Sample Complexity Trade-Off.

I. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation in-
volves inferring the directions of electromagnetic sources
received at an antenna array [5], [2]. If the sensor array is
a uniform linear array (ULA) of size M , it is well-known that
the number (Qq of uniquely identifiable sources satisfies the
bound Q ă M . In a series of work [6], [7], [8], it has been
established that the restriction Q ăM can be overcome when
the incoming sources are statistically uncorrelated. The main
idea in [6], [7] is to design suitable non-uniform sparse arrays
that can exploit this statistical property and create the effect
of a virtual difference co-array with an enlarged aperture of
size OpM2q. Algorithms such as Co-array MUSIC [9] and
Co-array LASSO [8] can recover more sources than sensors
by utilizing the difference co-array of these sparse arrays.

In [10], [3], the authors consider the scenario when the
sparse array is mounted on a moving platform. By introducing
array motion, it is possible to obtain a synthetic array after
combining the original sparse array and its shifted version.
The primary benefit of the synthetic array is its ability to
fill holes in the difference co-array of the static version.
This increases the length of the contiguous segment in the
difference array, and subsequently increase the number of
sources that can be identified. In [3], the authors present a
detailed discussion on this advantage for common sparse array
designs such as nested, coprime, minimum redundancy array
(MRA) and minimum hole array (MHA). It is also empirically
shown that array motion can indeed improve the performance
of DOA estimation by enlarging the virtual array aperture.

1This work is supported in part by the National Science Foundation under
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However, the idea of constructing a synthetic array as proposed
in [3] requires more temporal measurements than the static
non-synthetic array. Since the statistical performance of DOA
estimation is also dependent on the number of snapshots [4],
[11] in addition to the virtual array aperture, it is of great
importance to analyze the trade-off between the temporal
sample complexity and the expansion in size of difference
co-array due to motion. Such statistical performance analysis
has not been provided in existing literature.

The contributions of this paper are two fold. Firstly, we
propose a unified analysis of DOA estimation error for both
synthetic and non-synthetic arrays by using the analysis tech-
niques developed in [4]. In particular, we develop statistical
guarantees on the estimation error that explicitly characterize
the number of required temporal measurements. Secondly,
we compare the trade-off between the virtual array aperture
and temporal sample measurements based on these derived
error bounds. Several concrete sparse array configurations are
discussed to demonstrate when non-synthetic arrays may be
preferable. One of our main conclusions is to realize that the
key quantity of interest is the ratio of the lengths of the ULA
segments in the difference co-arrays of the synthetic and non-
synthetic configurations, which also controls the number of
required temporal measurements. If this ratio is above a certain
threshold, the synthetic array is recommended since it will
provably offer performance benefits.

Throughout the paper, we use d and ˚ to denote the
Khatri-Rao product and complex conjugate respectively. The
cardinality of a set S is denoted by |S|.

II. SIGNAL MODEL BASED ON ARRAY MOTION

Consider a sparse array with Ms antennas on a platform
moving at a constant speed v. The array receives narrowband
signals sqptq, q “ 1, 2, ¨ ¨ ¨ , Q around a carrier of wavelength
λ from far-field sources whose directions of arrival (DOA) are
given by θq . Assuming that the output of the array is sampled
at a frequency of 1{Ts Hz, the measurement vector xplTsq P
CMs at time t “ lTs is given by:

xplTsq “
Q
ÿ

q“1

sqplTsqe
´j

2πvlTs sinpθqq

λ apθqq ` nplTsq (1)

Here nptq denotes additive noise and

apθq “
”

1, e´jπd1 sinpθq, ¨ ¨ ¨ , e´jπdMs´1 sinpθq
ıT

is the array steering vector at time t “ 0 with dm being the
location of the mth sensor normalized with respect to λ{2
(assuming the first sensor to be at 0). Throughout this paper,
we make the following statistical assumptions:



[A1]: Let srls “ rs1plTsq, s2plTsq, ¨ ¨ ¨ , sQplTsqs
T . We

assume that srls are zero-mean i.i.d random vectors with
E
`

srlssrlsH
˘

“ diagppq where p “ rp1, p2, ¨ ¨ ¨ , pQs
T

denotes the source powers.
[A2]: The noise n rls follows a zero-mean complex Gaus-
sian distibution and is uncorrelated with srls, satisfying
E
`

nrlsnrlsH
˘

“ σ2IMs . The noise power σ2 is assumed
to be known.

The classical measurement model without array motion (v “
0) is given by [5], [6], [7]

xrls “ xplTsq “ Apθqsrls ` nrls, l “ 1, ¨ ¨ ¨ , L (2)

where Apθq “ rapθ1q, ¨ ¨ ¨apθQqs P CMsˆQ. Under assump-
tion [A1], the covariance matrix of xrls is given by:

Rxx “ ExrlsxrlsH “ AdiagppqAH ` σ2IMs
(3)

which can be reformulated as (3) as

rx “ vecpRxxq “ pA
˚ dAqp` σ2vecpIMs

q (4)

As shown in [6], [7], [8], [11], [4], the matrix A˚dA can be
identified as the array manifold of a virtual sensor array, the
location of whose elements are given by the following set:

D :“ tdm ´ dn, 1 ď m,n ďMsu (5)

The set D is also called as the “difference set” of the set of
physical antenna locations. For a well-designed sparse array,
the size of D can be as large as |D| “ OpM2

s q.
In [3], the authors exploit the motion of sparse arrays to

create a synthetic array whose difference set can be even
larger. In Figure 1, we show an example of the static and
synthetic array with motion. Since the source signal sqptq are
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Fig. 1: (a) Sensor locations for a coprime array with 2M `

N ´ 1 sensors (M “ 3 and N “ 5) before and after motion.
(b) Non-negative half of the difference co-array of the Non-
synthetic (Top) and Synthetic array (Bottom)

narrowband with respect to a carrier frequency f , for small
enough τ , we have sqplTs`τq « sqplTsqe

j2πfτ [3]. Denoting
ds :“ vτ{pλ{2q (τ is chosen such that ds is an integer2), the
shifted array steering vector is defined as [3]

bpθqq “ e´j
2πds sinpθqq

λ apθqq (6)

2In [3], the authors choose ds “ 1

And the measurements at lTs ` τ are given by

xplTs ` τq “ ej2πfτBDlsrls ` nplTs ` τq

where B “ rbpθ1q, ¨ ¨ ¨ ,bpθQqs P CMsˆQ and

D “ diagpe´j
2πvTs sinpθ1q

λ , ¨ ¨ ¨ , e´j
2πvTs sinpθQq

λ q P CQˆQ (7)

represents the phase-shift of the steering vector because of the
array motion. After compensating for the additional (known)
phase ej2πfτ , we obtain [12]

x̃plTs ` τq “ e´j2πfτxplTs ` τq “ BDlsrls ` ñplTs ` τq

Combining xrls and x̃plTs ` τq, we obtain the output of the
synthetic array as

yrls “

„

xplTsq
x̃plTs ` τq



(8)

“ AsynpθqD
lsrls `

„

nplTsq
ñplTs ` τq



where Asynpθq “ rasynpθ1q, ¨ ¨ ¨ ,asynpθQqs P C2MsˆQ and
asynpθq “ rapθq

T ,bpθqT sT denotes the overall steering vector
of the synthetic array. The difference co-array of the synthetic
array, denoted Dsyn, is generated by considering the difference
set of sensors at both their original locations and after being
shifted by ds units due to array motion. It is given by

Dsyn “ D
ď

tdm ´ dn ˘ ds, 1 ď m,n,ďMsu (9)

where D denotes the difference co-array of the non-synthetic
array, defined in (5). Evidently, |Dsyn| ě |D|. Let Usyn and U
denote the maximum ULA segment around 0 in Dsyn and D
respectively. Consider the covariance matrix of the synthetic
array, Ryy :“ E

`

yrlsyH rls
˘

. By retaining only those entries
of the matrix Ryy ´ σ2I2Ms which are indexed by Usyn, we
obtain the vector

r
Usyn
y “ VUsynp0 (10)

Here, VUsyn P C|Usyn|ˆQ consists of rows of the synthetic
difference co-array manifold A˚

syn dAsyn which are indexed
by Usyn. The vector p0 P RQ consists of the diagonal
entries of the matrix DlE

`

srlssrlsH
˘ `

Dl
˘H

. Although the
synthetic array has a larger difference co-array and hence
offers extra spatial degrees of freedom, we pay an additional
price in terms of the need to collect additional (in fact, twice)
temporal measurements. It is therefore important to understand
under what conditions synthetic array, equipped with a larger
difference set, provably leads to a smaller estimation error with
finite temporal snapshots.

III. SPATIO-TEMPORAL SAMPLE COMPLEXITY TRADE-OFF
IN SYNTHETIC ARRAYS

In this section, we analyze the performance of sparse
synthetic arrays with motion by explicitly characterizing the
trade-offs between the size of the difference co-array |Dsyn|

and temporal measurements L. We build on key ideas from our
recent paper on non-asymptotic performance analysis of sparse
arrays [4]. Denoting ω :“ π sinpθq as the spatial frequency,
we discretize the set of spatial angles into K grid points given
by ωk “ ´π ` 2πk{K, k “ 0, 1, ¨ ¨ ¨K ´ 1. Using this grid
based model, we can re-write (10) as [8], [3], [4]

r
Usyn
y “ ṼUsyn p̃0 (11)



where ṼUsyn P C|Usyn|ˆK and p̃0 P CK denote the quantities as
in (10) only defined on a grid of size K. The vector p̃0 P CK
is sparse with Q ăă K non-zero entries. The indices of the
non-zero elements of p̃0 reveal the desired DOAs on the grid.
Hence, by recovering p̃0, it is possible to estimate the DOAs.
In practice, we estimate Ryy using a finite number (L) of
snapshots as R̂yy “ 1

L

ř

l yrlsyrls
H . We can rewrite (11)

using this estimate as

r̂
Usyn
y “ ṼUsyn p̃0 `∆L (12)

where r̂
Usyn
y is the finite snapshot estimate of r

Usyn
y , obtained

from the sample covariance matrix. The vector ∆L depends
on L and represents the finite snapshot estimation error. The
statistical properties of ∆L plays crucial role in determining
the performance of synthetic arrays with limited snapshots.

Our goal is to estimate the sparse vector p̃0 since the non-
zero entries of this vector serve as estimates of the DOAs.
Following [8], [3], we propose to recover p̃0 by solving the
following optimization problem for synthetic array:

min
z
}z}1 s.t. }r̂Usyn

y ´ ṼUsynz}2 ď ε, z ľ 0 pPCo-den,synq

Similarly, let ṼU P C|U|ˆK represent the discretized array
manifold corresponding to the ULA segment U in the dif-
ference co-array of the non-synthetic array. We solve the
following problem to recover the sparse vector p̃0 of source
powers

min
z
}z}1 s.t. }r̂Uy ´ ṼUz}2 ď ε, z ľ 0 pPCo-denq

Leveraging recent results from [4], we will analyze and
compare the performance of both pPCo-denq and pPCo-den, synq.
We first introduce the notion of a separation condition that
will be imposed on the support of p̃0.

Definition 1. (Set of Non-negative Signals Obeying Separation
Condition) Given K and U, define the set P`sep

P`sep fi

tp P CK | p ľ 0, φp
k

K
,
l

K
q ě

4

|U| ´ 1
,@k ‰ l P Suppppqu

where φp¨, ¨q : R2 Ñ R` is a wrap-around distance function.

We utilize the following main result from [4].

Theorem 1. Let tyrlsuL´1
l“0 be i.i.d zero-mean circularly-

symmetric complex Gaussian random vectors with covariance
matrix Ryy. Suppose |U| ě 257, K ě 3.03|U| and ρ “

0.0295
´

|U|´1
2K

¯2

. If the sparse vector p̃0 obeys p̃0 P P`sep,

then for any ε ą 0 and δ P p0, 1q the solution p# to pPCo-denq

satisfies

}p# ´ p̃0}1 ď 2εp
1´ ρ

ρ
q (13)

with a probability at least 1´ δ provided

L ě max

#

2trace2pRyyq

ε2
,

ˆ

log 2
δ

2c

˙2
+

(14)

where c is a positive constant.

To apply Theorem 1 to the synthetic array, we need to
enforce that the collected snapshots are i.i.d complex Gaussian.
The following lemma establishes that indeed, tDlsrlsuL´1

l“0
continue to be i.i.d zero-mean circularly-symmetric Gaussian
random vectors.

Lemma 1. If tsrlsuL´1
l“0 are i.i.d circularly-symmetric complex

Gaussian random vectors with zero-mean independent coor-
dinates, then the snapshots tDlsrlsuL´1

l“0 are also independent
vectors with the same distribution.

Before we state our main result, we introduce some impor-
tant quantities below which will determine the overall sample
complexity:

ρsyn “ 0.0295p
|Usyn|

2K
q2, ρ “ 0.0295p

|U|
2K
q2

Cp “ 2M2 p}p̃0}1 ` σ
2q2

ε2

We characterize the total number of temporal measurements
LT required by both synthetic and non-synthetic array con-
figurations. For a synthetic array, a total of LT measurements
corresponds to LT {2 snapshots acquired at both the original
and shifted positions. Now, we are ready the state the main
result about the performance of the synthetic array specified
by (8).

Theorem 2. Suppose tsrlsuL´1
l“0 are i.i.d circularly-symmetric

complex Gaussian vectors. If p̃0 P P`sep, |Usyn| ě 257 and
K ě 3.03|Usyn|, then for a given δ P p0, 1q, the solution p#

of pPCo-den,synq with any ε ą 0 satisfies

}p# ´ p̃0}1 ď 2ε

with probability at least 1´ δ if

L ě max

#

4Cp
ρ2syn

,

ˆ

log 2
δ

2c

˙2
+

.

Proof. Follows directly from Theorem 1 by substituting ε as
ρsε
1´ρs

Similarly, we can obtain the following result for non-
synthetic array where we solve (PCo-den).

Corollary 1. Suppose tsrlsuL´1
l“0 are i.i.d circularly-symmetric

complex Gaussian vectors. If p̃0 P P`sep, |U| ě 257 and K ě

3.03|U|, the solution p# of pPCo´denq with any ε ą 0 satisfies

}p# ´ p̃0}1 ď 2ε

with probability at least 1´ δ if

L ě max

#

Cp
ρ2
,

ˆ

log 2
δ

2c

˙2
+

.

A. Comparison of Sample Complexities for Synthetic and Non-
Synthetic Arrays

We now compare the sample complexities of the two array
configurations to develop an understanding of the regime
where synthetic array offers performance benefits over the
non-synthetic array. Specifically, suppose we want both arrays
to achieve a desired upper bound of 2ε on the estimation



error with the same probability of 1 ´ δ. Since we use L
snapshots to estimate the covariance matrix for both arrays,
Theorem 2 dictates that the total number of temporal mea-
surements for the synthetic array should satisfy LT “ 2L ě

max

"

8Cp
ρsyn

, 2
´

log 2
δ

2c

¯2
*

. A simple computation reveals that if

ρsyn

ρ
ą 2

?
2

the synthetic array can achieve the same bound on estimation
error with fewer temporal measurements. The ratio ρsyn{ρ
is determined by the length of the central ULA segment of
the synthetic and non-synthetic co-arrays. As shown in the
following table, even with the same number of sensors Ms, this
quantity can have significantly different behavior depending on
the array geometry.

Array Number of |U| |Usyn|
ρsyn
ρ

sensors (Non-Syn) (Syn)
Conf 1 10 35 53 2.34

M “ 3, N “ 5
Conf 2 10 21 59 4.41

M “ 5, N “ 6
Conf 1 12 47 65 1.94

M “ 4, N “ 5
Conf 2 12 25 59 5.8403

M “ 4, N “ 9

TABLE I. Effect of Array Geometry on the ratio
ρsyn
ρ

Example: We consider two different coprime array config-
urations to illustrate the dependence of the ratio ρsyn{ρ on the
specific array geometry. Configuration I refers to the coprime
array from [7] consisting of two subarrays with 2M and N
sensors (M and N being coprime integers) and respective
inter-sensor spacings given by N and M . Configuration II
refers to the coprime array studied in [3], where the subarrays
consist of M and N elements, with N and M being the
respective intersensor spacings. In Table 1, we can see that
for the same number of sensors, the ratio ρsyn{ρ exceeds the
threshold 2

?
2 only with Configuration II. This is because

Configuration II has holes in the co-array, which get filled
due to array motion, resulting in higher performance gains.
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Fig. 2: Estimation error v/s LT for different Coprime Array
configurations with 10 sensors (a) Coprime array in config-
uration I with M “ 3 and N “ 5 (b) Coprime array in
configuration II with M “ 5 and N “ 6

IV. SIMULATIONS

In our first experiment, we compare the estimation error
from solving (PCo-den) and (PCo-den,syn) for the non-synthetic
and synthetic arrays respectively, using coprime arrays in
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Fig. 3: Sparse Support Recovery with Q “ 10 sources and
10 sensors using a coprime array in Configuration II. (a)
True support (blue) and its estimate (red) using non-synthetic
coprime array. (b) True support (blue) and its estimate (red)
using synthetic coprime array.

two different configurations. We consider 10 sensors and
Q “ 17 sources for configuration I, and Q “ 8 sources for
configuration II. The sources are placed randomly on a grid of
size 100. We evaluate the performance of both configurations
by computing the l1 norm of the estimation error }p#

´p̃0}1
}p̃0}1

averaged over 100 Monte Carlo trials, as the number of
measurements (L) varies from 50 to 6000. The SNR is chosen
to be 0dB for both configurations. Figure 2 (a) demonstrates
that for configuration I, the non-synthetic array requires fewer
measurements than synthetic array in order to achieve a desired
estimation error, as predicted by our theoretical analysis. In
Figure 2 (b), we observe that the synthetic array outperforms
non-synthetic array in configuration II. This observation is
consistent with the theoretical result as the ratio ρsyn{ρ ą 2

?
2

for this array configuration.
In the next experiment, we study the support recovery

performance of synthetic and non-synthetic coprime arrays
in configuration II. We consider 10 sensors and a total of
LT “ 2000 measurements for both synthetic and non-synthetic
arrays. For this experiment, we choose Q “ 10 sources which
are placed non-uniformly over the interval r´π, πs. In Figure
3, the synthetic array (b) outperforms the fixed array (a). This
happens because both configurations have different separation
condition determined by their ULA segment. The synthetic
array has a less stringent separation requirement due to a
larger ULA segment. This demonstrates that synthetic arrays
can allow higher resolution DOA estimates compared to non-
synthetic arrays.

V. CONCLUSION

In this paper, we developed statistical guarantees for DOA
estimation with sparse arrays in motion, which explicitly
reveals the trade-off between spatial and temporal measure-
ments. Our results demonstrate the potential benefits offered
by array motion under appropriate conditions. In particular, we
showed that if the ratio of the number of consecutive difference
lags with and without array motion is larger than a specific
threshold, synthetic arrays can achieve the same error as static
arrays with potentially fewer temporal snapshots. Our analysis
can be used in practice to make an informed choice between
synthetic and non-synthetic configurations.
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